Point Estimation

Chapter 10, Miller and Miller

November 24, 2015

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Big Concepts of the Day

- Population and Parameters
- Key Ingredient: Random Sample

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Sample and Statistics

Big Concepts of the Day

- Population and Parameters
- Key Ingredient: Random Sample
- Sample and Statistics
- Last week's Grand Question: What do sample statistics tell us about population parameters?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Big Concepts of the Day

- Population and Parameters
- Key Ingredient: Random Sample
- Sample and Statistics
- Last week's Grand Question: What do sample statistics tell us about population parameters?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Today's Grand Question: Which sample statistics tell us about which population parameters?

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called *point estimate*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called *point estimate*.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Examples: \bar{X} is a point estimator of μ .

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called *point estimate*.

Examples: \bar{X} is a point estimator of μ . S^2 is a point estimator of σ^2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Desirable properties of Estimators

- Unbiasedness
- Minimum Variance or Efficiency

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Consistency

Unbiased Estimator

Definition

A statistic $\hat{\Theta}$ is an unbiased estimator of parameter θ of a given distribution if and only if $E(\hat{\Theta}) = \theta$ for all possible values of θ .

Unbiased Estimator

Definition

A statistic $\hat{\Theta}$ is an unbiased estimator of parameter θ of a given distribution if and only if $E(\hat{\Theta}) = \theta$ for all possible values of θ .

Last class we showed $E(\bar{X}) = \mu$, so \bar{X} is an unbiased estimator of θ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Unbiasedness - Intuition

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Biased and unbiased estimators.

If X is a binomial distribution with the parameters n and θ , show that the sample proportion, X/n is an unbiased estimator of θ .

Given a random sample of size *n* from a population that has known mean μ and finite variance σ^2 , show that

$$\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

is an unbiased estimator of σ^2 .

If X is a binomial distribution with the parameters n and θ . Is (X + 1)/(n + 2) an unbiased estimator of θ ?

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Asymptotically Unbiased Estimator

Definition

Let $b_n(\theta) = E(\hat{\Theta}) - \theta$ express the bias of an estimator $\hat{\Theta}$ based on a random sample of size *n* from a given distribution. We say $\hat{\Theta}$ is an asymptotically unbiased estimator of θ if and only if

$$\lim_{n\to\infty}b_n(\theta)=0$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

If X is a binomial distribution with the parameters n and θ . Is (X + 1)/(n + 2) an asymptotically unbiased estimator of θ ?

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

If S^2 is the variance of a random sample from an infinite population with the finite variance σ^2 then $E(S^2) = \sigma^2$.

If S^2 is the variance of a random sample from an infinite population with the finite variance σ^2 then $E(S^2) = \sigma^2$. Proof.

Efficiency

Definition

If the estimate $\hat{\Theta}$ for the parameter θ of a given distribution that has the smallest variance of all unbiased estimators for θ is called the minimum variance unbiased estimator or the best unbiased estimator for θ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Efficiency - Intuition

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Distribution of three estimators of θ .

Consistency

Definition

 $\hat{\Theta}$ is said to be a consistent estimator of θ if it approaches the true value θ as the sample size gets larger and larger. Formally

$$\lim_{n o\infty} P(|\hat{\Theta}- heta|<\delta)=1 \qquad orall \quad \delta>0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Consistency - Intuition

The distribution of $\hat{\theta}$ as sample size increases.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Possible Complications

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Tradeoff between bias and variance.

Ways to get (desirable) Estimators

- Method of Moments
- Method of Maximum Likelihood

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Bayesian estimation

The kth sample moment of a set of observations $x_1, x_2, ..., x_n$ is the mean of their kth powers, and is denoted by m'_k

$$m'_{k} = \frac{\sum\limits_{i=1}^{n} x_{i}^{k}}{n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

The kth sample moment of a set of observations $x_1, x_2, ..., x_n$ is the mean of their kth powers, and is denoted by m'_k

$$m'_{k} = \frac{\sum\limits_{i=1}^{n} x_{i}^{k}}{n}$$

If a population has r parameters then the method of moments consists of solving the system of equations

$$m'_{k} = \mu'_{k}$$
 $k = 1, 2, ..., r$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Given a random sample of size *n* from a Poisson population, use the method of moments to obtain an estimator for the parameter λ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

If $x_1, x_2, ..., x_n$ are values of a random sample from a population with a parameter θ , the likelihood function is given by

$$L(\theta) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n) = f(x_1, x_2, ..., x_n; \theta)$$

for values of θ within a given domain. The value of θ which maximized $L(\theta)$ is called the maximum likelihood estimator of θ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Given a random sample of size *n* from a Poisson population, use the method of maximum likelihood to obtain an estimator for the parameter λ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The difference between frequentist statisticians and Bayesian statisticians has to do with whether a statistician thinks of a parameter as some unknown constant or as a random variable. Let's take a look at a simple example in an attempt to emphasize the difference.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prior belief: $P(\lambda = 3) = 0.7$ and $P(\lambda = 5) = 0.3$

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda = 3) = 0.7$ and $P(\lambda = 5) = 0.3$
- On a randomly selected time interval, the engineer observes x = 7 cars pass through the intersection.

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda = 3) = 0.7$ and $P(\lambda = 5) = 0.3$
- On a randomly selected time interval, the engineer observes x = 7 cars pass through the intersection.
- In light of the engineer's observation, what is the probability that λ = 3? And what is the probability that λ = 5?

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda = 3) = 0.7$ and $P(\lambda = 5) = 0.3$
- On a randomly selected time interval, the engineer observes x = 7 cars pass through the intersection.
- In light of the engineer's observation, what is the probability that λ = 3? And what is the probability that λ = 5?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $P(\lambda = 3 | X = 7)$ higher or $P(\lambda = 5 | X = 7)$?

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda = 3) = 0.7$ and $P(\lambda = 5) = 0.3$
- On a randomly selected time interval, the engineer observes x = 7 cars pass through the intersection.
- In light of the engineer's observation, what is the probability that λ = 3? And what is the probability that λ = 5?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $P(\lambda = 3|X = 7)$ higher or $P(\lambda = 5|X = 7)$?
- Priors and Posteriors!