Point Estimation

Chapter 10, Miller and Miller

November 24, 2015

Big Concepts of the Day

- Population and Parameters

■ Key Ingredient: Random Sample

- Sample and Statistics

Big Concepts of the Day

- Population and Parameters

■ Key Ingredient: Random Sample

- Sample and Statistics

■ Last week's Grand Question: What do sample statistics tell us about population parameters?

Big Concepts of the Day

- Population and Parameters

■ Key Ingredient: Random Sample

- Sample and Statistics

■ Last week's Grand Question: What do sample statistics tell us about population parameters?
■ Today's Grand Question: Which sample statistics tell us about which population parameters?

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called point estimate.

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called point estimate.

Examples: \bar{X} is a point estimator of μ.

What is Point Estimation?

Definition

Using the value of sample statistic to estimate the value of population parameter is called point estimation. The value of the statistic is called point estimate.

Examples: \bar{X} is a point estimator of $\mu . S^{2}$ is a point estimator of σ^{2}

Desirable properties of Estimators

- Unbiasedness
- Minimum Variance or Efficiency
- Consistency

Unbiased Estimator

Definition

A statistic $\hat{\theta}$ is an unbiased estimator of parameter θ of a given distribution if and only if $E(\hat{\Theta})=\theta$ for all possible values of θ.

Unbiased Estimator

Definition

A statistic $\hat{\theta}$ is an unbiased estimator of parameter θ of a given distribution if and only if $E(\hat{\Theta})=\theta$ for all possible values of θ.

Last class we showed $E(\bar{X})=\mu$, so \bar{X} is an unbiased estimator of θ.

Unbiasedness - Intuition

Biased and unbiased estimators.

Example 1

If X is a binomial distribution with the parameters n and θ, show that the sample proportion, X / n is an unbiased estimator of θ.

Example 2

Given a random sample of size n from a population that has known mean μ and finite variance σ^{2}, show that

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}
$$

is an unbiased estimator of σ^{2}.

Example 3

If X is a binomial distribution with the parameters n and θ. Is $(X+1) /(n+2)$ an unbiased estimator of θ ?

Asymptotically Unbiased Estimator

Definition

Let $b_{n}(\theta)=E(\hat{\Theta})-\theta$ express the bias of an estimator $\hat{\Theta}$ based on a random sample of size n from a given distribution. We say $\hat{\theta}$ is an asymptotically unbiased estimator of θ if and only if

$$
\lim _{n \rightarrow \infty} b_{n}(\theta)=0
$$

Example 3 - Again

If X is a binomial distribution with the parameters n and θ. Is $(X+1) /(n+2)$ an asymptotically unbiased estimator of θ ?

Mystery of Sample Variance

If S^{2} is the variance of a random sample from an infinite population with the finite variance σ^{2} then $E\left(S^{2}\right)=\sigma^{2}$.

Mystery of Sample Variance

If S^{2} is the variance of a random sample from an infinite population with the finite variance σ^{2} then $E\left(S^{2}\right)=\sigma^{2}$. Proof.

Efficiency

Definition

If the estimate $\hat{\Theta}$ for the parameter θ of a given distribution that has the smallest variance of all unbiased estimators for θ is called the minimum variance unbiased estimator or the best unbiased estimator for θ.

Efficiency - Intuition

Distribution of three estimators of θ.

Consistency

Definition

$\hat{\Theta}$ is said to be a consistent estimator of θ if it approaches the true value θ as the sample size gets larger and larger. Formally

$$
\lim _{n \rightarrow \infty} P(|\hat{\Theta}-\theta|<\delta)=1 \quad \forall \delta>0
$$

Consistency - Intuition

The distribution of $\hat{\theta}$ as sample size increases.

Possible Complications

Tradeoff between bias and variance.

Ways to get (desirable) Estimators

■ Method of Moments

- Method of Maximum Likelihood
- Bayesian estimation

Method of Moments

■ The kth sample moment of a set of observations x_{1}, x_{2}, \ldots, x_{n} is the mean of their k th powers, and is denoted by m_{k}^{\prime}

$$
m_{k}^{\prime}=\frac{\sum_{i=1}^{n} x_{i}^{k}}{n}
$$

Method of Moments

■ The kth sample moment of a set of observations x_{1}, x_{2}, \ldots, x_{n} is the mean of their kth powers, and is denoted by m_{k}^{\prime}

$$
m_{k}^{\prime}=\frac{\sum_{i=1}^{n} x_{i}^{k}}{n}
$$

- If a population has r parameters then the method of moments consists of solving the system of equations

$$
m_{k}^{\prime}=\mu_{k}^{\prime} \quad k=1,2, \ldots, r
$$

Example 4

Given a random sample of size n from a Poisson population, use the method of moments to obtain an estimator for the parameter λ.

Method of Maximum Likelihood

If $x_{1}, x_{2}, \ldots, x_{n}$ are values of a random sample from a population with a parameter θ, the likelihood function is given by

$$
L(\theta)=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

for values of θ within a given domain. The value of θ which maximized $L(\theta)$ is called the maximum likelihood estimator of θ.

Example 4 - Again

Given a random sample of size n from a Poisson population, use the method of maximum likelihood to obtain an estimator for the parameter λ.

Bayesian Estimation

The difference between frequentist statisticians and Bayesian statisticians has to do with whether a statistician thinks of a parameter as some unknown constant or as a random variable. Let's take a look at a simple example in an attempt to emphasize the difference.

Bayesian Estimation - Example

■ A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

Bayesian Estimation - Example

■ A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

- Prior belief: $P(\lambda=3)=0.7$ and $P(\lambda=5)=0.3$

Bayesian Estimation - Example

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda=3)=0.7$ and $P(\lambda=5)=0.3$
- On a randomly selected time interval, the engineer observes $x=7$ cars pass through the intersection.

Bayesian Estimation - Example

- A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.
- Prior belief: $P(\lambda=3)=0.7$ and $P(\lambda=5)=0.3$

■ On a randomly selected time interval, the engineer observes $x=7$ cars pass through the intersection.

- In light of the engineer's observation, what is the probability that $\lambda=3$? And what is the probability that $\lambda=5$?

Bayesian Estimation - Example

■ A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

- Prior belief: $P(\lambda=3)=0.7$ and $P(\lambda=5)=0.3$

■ On a randomly selected time interval, the engineer observes $x=7$ cars pass through the intersection.

■ In light of the engineer's observation, what is the probability that $\lambda=3$? And what is the probability that $\lambda=5$?
■ $P(\lambda=3 \mid X=7)$ higher or $P(\lambda=5 \mid X=7)$?

Bayesian Estimation - Example

■ A traffic control engineer believes that the cars passing through a particular intersection arrive at a mean rate λ equal to either 3 or 5 for a given time interval.

- Prior belief: $P(\lambda=3)=0.7$ and $P(\lambda=5)=0.3$

■ On a randomly selected time interval, the engineer observes $x=7$ cars pass through the intersection.
■ In light of the engineer's observation, what is the probability that $\lambda=3$? And what is the probability that $\lambda=5$?
■ $P(\lambda=3 \mid X=7)$ higher or $P(\lambda=5 \mid X=7)$?

- Priors and Posteriors!

