Functions of Random Variables

Chapter 7, Miller and Miller Chapter 6 Last Half, Ross

November 3, 2015

What are we doing today?

- Given a set of random variables, $X_{1}, X_{2}, \ldots, X_{n}$ we know their joint probability distribution or density

What are we doing today?

- Given a set of random variables, $X_{1}, X_{2}, \ldots, X_{n}$ we know their joint probability distribution or density
- We want to find the distribution or density of some random variable $Y=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$

What are we doing today?

- Given a set of random variables, $X_{1}, X_{2}, \ldots, X_{n}$ we know their joint probability distribution or density
- We want to find the distribution or density of some random variable $Y=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
-

$$
F(Y)=P(Y \leq y)=P\left[u\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq y\right],
$$

- For continuous rvs,

$$
f(Y)=\frac{d F}{d Y}
$$

What are we doing today?

- Given a set of random variables, $X_{1}, X_{2}, \ldots, X_{n}$ we know their joint probability distribution or density
- We want to find the distribution or density of some random variable $Y=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
-

$$
F(Y)=P(Y \leq y)=P\left[u\left(X_{1}, X_{2}, \ldots, X_{n}\right) \leq y\right],
$$

- For continuous rvs,

$$
f(Y)=\frac{d F}{d Y}
$$

Example 1

If the probability distribution of X is given by

x	0	1	2	3	4
$f(x)$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

What is the distribution function of $Z=(X-2)^{2}$?

Example 1: Hint

$$
\begin{array}{r}
x=0,4 \rightarrow z=4 \\
x=1,3 \rightarrow z=1 \\
x=2 \rightarrow z=0
\end{array}
$$

So,

$$
\begin{aligned}
& h(z=0)=f(2) \\
& h(z=1)=f(1)+f(3) \\
& h(z=4)=f(0)+f(4)
\end{aligned}
$$

Example 2

If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{rc}
2 x e^{-x^{2}} & \text { for } \\
0 & \text { elsewhere }
\end{array}\right.
$$

What is the distribution function of $Y=X^{2}$?

Example 2: Solution

$$
\begin{aligned}
F(y) & =P(Y \leq y) \\
& =P\left(X^{2} \leq y\right) \\
& =P(-\sqrt{y} \leq X \leq \sqrt{y}) \\
& =\int_{x=-\sqrt{y}}^{0} 0 d x+\int_{x=0}^{\sqrt{y}} 2 x e^{-x^{2}} d x \quad \text { [Integration mistake in class corrected!] } \\
& =\left.\frac{e^{-x^{2}}}{-1}\right|_{x=0} ^{\sqrt{y}} \\
& =1-e^{-y}
\end{aligned}
$$

Note,

$$
f(y)=F^{\prime}(y)=e^{-y}
$$

Transformation Technique: Discrete

Given X is a discrete random variable and $Y=u(X)$ where the relationship between X and Y is one-to-one, then substitute the values of Y for values of X and the probability distribution of Y is 'unchanged'.

Example 3

If the probability distribution of X is given by

x	0	1	2	3	4
$f(x)$	$\frac{1}{16}$	$\frac{4}{16}$	$\frac{6}{16}$	$\frac{4}{16}$	$\frac{1}{16}$

What is the distribution function of $Y=\frac{1}{1+X}$?

Transformation Technique: Continuous

Theorem: Let $f(x)$ be the value of probability density of the continuous random variable X at x. If function given by $y=u(x)$ is differentiable and either increasing or decreasing for all values within the range of X for which $f(x) \neq 0$, them for these values of x, the equation $y=u(x)$ can be uniquely solved for x to give $x=w(y)$, and for the corresponding values of y the probability density function of $Y=u(X)$ is given by

$$
g(y)=f[w(y)] \cdot\left|w^{\prime}(y)\right| \quad \text { provided } u^{\prime}(x) \neq 0
$$

Example 4

If the probability density of X is given by

$$
f(x)=\left\{\begin{array}{rc}
e^{-x} & \text { for } \\
0 & \text { elsewhere }
\end{array}\right.
$$

What is the distribution function of $Y=\sqrt{X}$?

Example 4: Solution

The probability density of Y is

$$
g(y)=\left\{\begin{array}{rc}
2 y e^{-y^{2}} & \text { for } \\
0 & \text { elsewhere }
\end{array} \quad y>0\right.
$$

Distribution function of Y is

$$
G(y)=\left\{\begin{array}{rc}
\int_{0}^{y} 2 z e^{-z^{2}} d z & \text { for } \\
0 & \text { elsewhere }
\end{array}\right.
$$

Transformation Technique: Many, Discrete

- Suppose X_{1} and X_{2} are two discrete rvs with pdf $f\left(X_{1}, X_{2}\right)$

Transformation Technique: Many, Discrete

- Suppose X_{1} and X_{2} are two discrete rvs with pdf $f\left(X_{1}, X_{2}\right)$
- What is the probability density function of $Y=u\left(X_{1}, X_{2}\right)$?

Transformation Technique: Many, Discrete

- Suppose X_{1} and X_{2} are two discrete rvs with pdf $f\left(X_{1}, X_{2}\right)$
- What is the probability density function of $Y=u\left(X_{1}, X_{2}\right)$?
- Write X_{1} as a function of Y and X_{2}. Add over all values of X_{2}.

Transformation Technique: Many, Discrete

- Suppose X_{1} and X_{2} are two discrete rvs with pdf $f\left(X_{1}, X_{2}\right)$
- What is the probability density function of $Y=u\left(X_{1}, X_{2}\right)$?
- Write X_{1} as a function of Y and X_{2}. Add over all values of X_{2}.
- If X_{1} and X_{2} are independent rvs having Poisson distributions with parameters λ_{1}, and λ_{2}, what is the pdf of $Y=X_{1}+X_{2}$?

Example 5

If the joint pdf of X and Y is given by

$$
f(x, y)=\frac{(x-y)^{2}}{7}
$$

for $x=1,2$ and $y=1,2,3$, find the joint distribution of $U=X+Y$ and V $=\mathrm{X}-\mathrm{Y}$.

Example 5

If the joint pdf of X and Y is given by

$$
f(x, y)=\frac{(x-y)^{2}}{7}
$$

for $x=1,2$ and $y=1,2,3$, find the joint distribution of $U=X+Y$ and V $=\mathrm{X}-\mathrm{Y}$.
We can use this method of substitution only for linear functions of X and Y.

Theorem: MGF

If $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables and

$$
Y=X_{1}+X_{2}+\ldots+X_{n}
$$

then

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

where $M_{X_{i}}(t)$ is the moment-generating function of X_{i}.

