Joint Random Variables

Chapters 6 and parts of 7, Sheldon Ross Chapters 4, 5, 6 (second halves), Miller \& Miller

October 29, 2015

Why multivariate?

- We are often interested in the probability of two or more variables

Why multivariate?

- We are often interested in the probability of two or more variables
- E.g.: Height and Weight, IQ and Attendance, Practise and Marks

Why multivariate?

- We are often interested in the probability of two or more variables
- E.g.: Height and Weight, IQ and Attendance, Practise and Marks
- Think of any other examples?

Joint probability mass function

- If X and Y are discrete random variables, the function given by

$$
f(x, y)=P(X=x, Y=y)
$$

for each pair of values (x, y) within the range of X and Y is called the joint probability distribution of X and Y.

Joint probability mass function

- If X and Y are discrete random variables, the function given by

$$
f(x, y)=P(X=x, Y=y)
$$

for each pair of values (x, y) within the range of X and Y is called the joint probability distribution of X and Y.

Properties

A bivariate function can serve as a joint probability density function of a pair of discrete random variables X and Y if and only if its values $f(x, y)$ satisfy the conditions:

- $f(x, y) \geq 0$ for each pair of values (x, y) within its domain

■ $\sum_{x} \sum_{y} f(x, y)=1$ when the double summation extends over all possible pairs (x, y) within its domain.

Homework Problem

What is the joint probability mass function of X and Y when in a roll of two fair dice?
X is the largest value obtained by any dice and Y is the sum of the values.

$$
\begin{aligned}
P_{X}(a) & =P(X \leq a) \\
& =P[X \leq a, Y \leq \infty] \\
& =P\left[\lim _{b \rightarrow \infty}(X \leq a, Y \leq b)\right] \\
& =\lim _{b \rightarrow \infty} P[(X \leq a, Y \leq b)] \\
& =\lim _{b \rightarrow \infty} F(a, b) \equiv F(a, \infty)
\end{aligned}
$$

$$
\begin{aligned}
P_{Y}(b) & =P(Y \leq b) \\
& =\lim _{a \rightarrow \infty} F(a, b) \equiv F(\infty, b)
\end{aligned}
$$

Marginal Distribution

If X and Y are discrete random variables and $f(x, y)$ is the value of their joint probability distribution at (x, y), the function given by

$$
g(x)=\sum_{y} f(x, y)
$$

for each $x \in X$ is called the marginal distribution of X.
Correspondingly, the function given by

$$
h(y)=\sum_{x} f(x, y)
$$

for each $y \in Y$ is called the marginal distribution of Y.

Expected Joint Functions

If X and Y are discrete random variables and $f(x, y)$ is the joint pdf at (x, y), the expected value of $g(X, Y)$ is

$$
\begin{aligned}
& E[g(X, Y)] \\
& =\sum_{x} \sum_{y} g(x, y) \cdot f(x, y)
\end{aligned}
$$

Expectations

Expectation of Sum of Joint Functions

If c_{1}, c_{2}, \ldots and c_{n} are constants, then

$$
E\left[\sum_{i=1}^{n} c_{i} g_{i}\left(X_{1}, X_{2}, \ldots, X_{k}\right)\right]=\sum_{i=1}^{n} c_{i} E\left[g_{i}\left(X_{1}, X_{2}, \ldots, X_{k}\right)\right]
$$

Product Moments about the Origin

The r th and sth moment about the origin of the discrete random variables X and Y, denoted by $\mu_{r, s}^{\prime}$ is the expected value of $X^{r} Y^{s}$:

$$
\begin{aligned}
& \mu_{r, s}^{\prime}=E\left(X^{r} Y^{s}\right) \\
& =\sum_{x} \sum_{y} x^{r} y^{s} \cdot f(x, y)
\end{aligned}
$$

Product Moments about the Mean

The r th and sth moment about the means of the discrete random variables X and Y, denoted by $\mu_{r, s}$ is the expected value of $\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}$:

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\sum_{X} \sum_{y}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} \cdot f(x, y)
\end{aligned}
$$

Product Moments about the Mean

The r th and sth moment about the means of the discrete random variables X and Y, denoted by $\mu_{r, s}$ is the expected value of $\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}$:

$$
\begin{aligned}
\mu_{r, s} & =E\left[\left(X-\mu_{X}\right)^{r}\left(Y-\mu_{Y}\right)^{s}\right] \\
& =\sum_{X} \sum_{y}\left(x-\mu_{X}\right)^{r}\left(y-\mu_{Y}\right)^{s} \cdot f(x, y)
\end{aligned}
$$

$\mu_{1,1}$ is covariance of X and Y or $\sigma_{X Y}$.

Theorem: Covariance

$$
\sigma_{X Y}=\mu_{1,1}^{\prime}-\mu_{X} \mu_{Y}
$$

Theorem: Correlation

$$
\begin{aligned}
\rho_{X, Y}=\operatorname{corr}(X, Y) & =\frac{\operatorname{cov}(X, Y)}{\sigma_{X} \sigma_{Y}} \\
& =\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}} \\
& =\frac{\sum_{x} \sum_{y}\left(x-\mu_{x}\right)\left(y-\mu_{y}\right) f(x, y)}{\sqrt{\left[\sum_{x}\left(x-\mu_{X}\right)^{2} f_{x}(x)\right]\left[\sum_{y}\left(y-\mu_{y}\right)^{2} f_{y}(y)\right]}}
\end{aligned}
$$

Independence of Random Variables

The random variables X and Y are said to be independent if, for any two sets of real numbers A and B,

$$
P(X \in A, Y \in B)=P[X \in A] \cdot P[Y \in B]
$$

Independence of Random Variables

The random variables X and Y are said to be independent if, for any two sets of real numbers A and B,

$$
P(X \in A, Y \in B)=P[X \in A] \cdot P[Y \in B]
$$

Alternatively

$$
f\left(x_{1}, x_{2}, \ldots x_{n}\right)=f_{1}\left(x_{1}\right) \cdot f_{2}\left(x_{3}\right) \cdot \cdot f_{n}\left(x_{n}\right)
$$

Homework Problem

The joint probability mass function of X and Y are given by

$$
\begin{array}{ll}
p(1,1)=\frac{1}{8}, & p(1,2)=\frac{1}{4} \\
p(2,1)=\frac{1}{8}, & p(2,2)=\frac{1}{2}
\end{array}
$$

Are X and Y independent?

Homework Problem

The joint probability mass function of X and Y are given by

$$
\begin{array}{ll}
p(1,1)=\frac{1}{8}, & p(1,2)=\frac{1}{4} \\
p(2,1)=\frac{1}{8}, & p(2,2)=\frac{1}{2}
\end{array}
$$

Are X and Y independent? Compute $P[X \mid Y \leq 1]$

Theorem: Independence

If X and Y are independent, then

$$
E(X Y)=E(X) \cdot E(Y) \quad \text { and } \quad \sigma_{X Y}=0
$$

Theorem: More Independence

If X_{1}, X_{2}, \ldots, and X_{n} are independent, then

$$
E\left(X_{1} X_{2} \ldots X_{n}\right)=E\left(X_{1}\right) \cdot E\left(X_{2}\right) \ldots E\left(X_{n}\right)
$$

Theorem: Moments of Linear Combinations of Random Variables

If X_{1}, X_{2}, \ldots, and X_{n} are random variables and a_{1}, a_{2}, \ldots, and a_{n} are constants and

$$
Y=\sum_{i=1}^{n} a_{i} X_{i}
$$

then

$$
\begin{aligned}
E(Y) & =\sum_{i=1}^{n} a_{i} E\left(X_{i}\right) \\
\operatorname{var}(Y) & =\sum_{i=1}^{n} a_{i}^{2} \cdot \operatorname{var}\left(X_{i}\right)+2 \sum \sum_{i<j} a_{i} a_{j} \cdot \operatorname{cov}\left(X_{i}, X_{j}\right)
\end{aligned}
$$

Corollary of the Previous Theorem

If random variables X_{1}, X_{2}, \ldots, and X_{n} are independent and a_{1}, a_{2}, \ldots, and a_{n} are constants and

$$
Y=\sum_{i=1}^{n} a_{i} X_{i}
$$

then

$$
\operatorname{var}(Y)=\sum_{i=1}^{n} a_{i}^{2} \cdot \operatorname{var}\left(X_{i}\right)
$$

Theorem: MB

If X_{1}, X_{2}, \ldots, and X_{n} are random variables and $a_{1}, a_{2}, \ldots, a_{n}, b_{1}$, b_{2}, \ldots, b_{n} are constants and

$$
Y_{1}=\sum_{i=1}^{n} a_{i} X_{i}, \quad Y_{2}=\sum_{i=1}^{n} b_{i} X_{i}
$$

then

$$
\operatorname{cov}\left(Y_{1}, Y_{2}\right)=\sum_{i=1}^{n} a_{i} b_{i} \cdot \operatorname{var}\left(X_{i}\right)+\sum \sum_{i<j}\left(a_{i} b_{j}+a_{j} b_{i}\right) \cdot \operatorname{cov}\left(X_{i}, X_{j}\right)
$$

Corollary of the Previous Theorem

If random variables X_{1}, X_{2}, \ldots, and X_{n} are independent and a_{1}, $a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{n}$ are constants and

$$
Y_{1}=\sum_{i=1}^{n} a_{i} X_{i}, \quad Y_{2}=\sum_{i=1}^{n} b_{i} X_{i}
$$

then

$$
\operatorname{cov}\left(Y_{1}, Y_{2}\right)=\sum_{i=1}^{n} a_{i} b_{i} \cdot \operatorname{var}\left(X_{i}\right)
$$

Conditional Distribution

If $f(x, y)$ is the value of their joint probability distribution of discrete random variables X and Y at (x, y), and $h(y)$ is the value of the marginal distribution of Y at y , the function given by

$$
v(x \mid y)=\frac{f(x, y)}{h(y)} \quad h(y) \neq 0
$$

for each $x \in X$ is called the conditional distribution of X given Y $=\mathrm{y}$. Correspondingly, if $g(x)$ is the value of the marginal distribution of X at x , the function given by

$$
w(x \mid y)=\frac{f(x, y)}{g(x)} \quad g(x) \neq 0
$$

for each $y \in Y$ is called the conditional distribution of Y given X $=\mathrm{x}$.

Homework Problem

If

$$
\begin{aligned}
\operatorname{var}\left(X_{1}\right) & =5, \operatorname{var}\left(X_{2}\right)=4, \operatorname{var}\left(X_{3}\right)=7 \\
\operatorname{cov}\left(X_{1}, X_{2}\right) & =3, \operatorname{cov}\left(X_{1}, X_{3}\right)=-2
\end{aligned}
$$

and X_{2} and X_{3} are independent. Find the covariance of $Y_{1}=X_{1}-2 X_{2}+3 X_{3}$ and $Y_{2}=-2 X_{1}+3 X_{2}+4 X_{3}$.

