Random Variables

Chapters 4, 7 (mixed), Sheldon Ross Chapters 3, 4 (mixed) Miller \& Miller

October 6, 2015

Table of contents

Random Variables

Discrete Random Variables
PDF
CDF
PDF - CDF

Expected Values
 Properties

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

Variance
Chebyshev
Moment-Generating Functions
Special Discrete RVs

Random Variables

- Why do we conduct experiments?

Random Variables

- Why do we conduct experiments?
- Because we are interested in some particular outcomes

Random Variables

- Why do we conduct experiments?
- Because we are interested in some particular outcomes
- Example, in tossing two dice we are interested in the sum of two dice, not on the value of each die
- In teacher ratings, we are interested in the average scores not in individual scores

Random Variables

- Why do we conduct experiments?
- Because we are interested in some particular outcomes
- Example, in tossing two dice we are interested in the sum of two dice, not on the value of each die
- In teacher ratings, we are interested in the average scores not in individual scores
- If S is a sample space with a probability measure and X is a real-valued function defined over the elements of S, then X is called a random variable.

Intuition of Random Variables

Suppose a medical researcher is testing eight elderly adults for their allergic reaction (yes or no) to a new drug for controlling blood pressure.

1. Random variable (X) is the number of people who have allergic reaction (random variable denotes outcome of an experiment)

Chapters 4, 7 (mixed), Sheldon

Intuition of Random Variables

Suppose a medical researcher is testing eight elderly adults for their allergic reaction (yes or no) to a new drug for controlling blood pressure.

1. Random variable (X) is the number of people who have allergic reaction (random variable denotes outcome of an experiment)
2. Possible values of X are $0,1,2,3,4,5,6,7,8$ (random variable is a number)

Chapters 4, 7 (mixed), Sheldon

Intuition of Random Variables

Suppose a medical researcher is testing eight elderly adults for their allergic reaction (yes or no) to a new drug for controlling blood pressure.

1. Random variable (X) is the number of people who have allergic reaction (random variable denotes outcome of an experiment)
2. Possible values of X are $0,1,2,3,4,5,6,7,8$ (random variable is a number)
3. If p is the probability of allergic reaction, the probability of different values of X is (each value of the random variable occurs with a probability)

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the minimum value to appear in the two rolls;

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the minimum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the minimum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the sum of the two rolls;

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

Example 1

Suppose that a dice is rolled twice. What are the possible values that the following random variables can take on:

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the minimum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the sum of the two rolls;
- Ans: $\{2,3,4, \ldots, 12\}$

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

Example 1

Chapters 4, 7 (mixed), Sheldon

- the maximum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the minimum value to appear in the two rolls;
- Ans: $\{1,2,3,4,5,6\}$
- the sum of the two rolls;
- Ans: $\{2,3,4, \ldots, 12\}$
- the value of the first roll minus the value of the second roll

Example 1

Chapters 4, 7 (mixed), Sheldon

- Ans: $\{2,3,4, \ldots, 12\}$
- the value of the first roll minus the value of the second roll
- Ans: $\{-5,-4, \ldots, 4,5\}$

Example 2

Two balls are chosen randomly from an urn containing 8 white, 4 black and 2 orange balls. Suppose that we win Rs. 2 for each black ball selected and we lose Rs. 1 for each white ball. Let X denote our winnings.

```
```

 Chapters 4, }
    ```
```

 Chapters 4, }
 (mixed), Sheldon
(mixed), Sheldon
Ross
Ross
Chapters 3, 4
Chapters 3, 4
(mixed) Miller \&
(mixed) Miller \&
Miller

```
```

 Miller
    ```
```


Example 2

Two balls are chosen randomly from an urn containing 8 white, 4 black and 2 orange balls. Suppose that we win Rs. 2 for each black ball selected and we lose Rs. 1 for each white ball. Let X denote our winnings.
What are the possible values of X ?

Random Variables

Example 2

Two balls are chosen randomly from an urn containing 8 white, 4 black and 2 orange balls. Suppose that we win Rs. 2 for each black ball selected and we lose Rs. 1 for each white ball. Let X denote our winnings.
What are the possible values of X ?
What are the probabilities associated with each value?

Definition

```
Chapters 4, }
(mixed), Sheldon
    Ross
- A discrete random variable takes at most countable number of possible values
- It is a random variable \(X\) which assumes one the values \(x_{1}, x_{2}, \ldots\)
- The probability mass function is
\[
\begin{array}{ll}
p\left(x_{i}\right) \geq 0 & \text { for } i=1,2,3 . \\
p(x)=0 & \text { for all other values of } x
\end{array}
\]
- \(\sum_{i=1}^{\infty} p\left(x_{i}\right)=1\)

\section*{Example 3}

Four independent flips of a fair coin are made. Let \(X\) denote the number of heads obtained. Plot the probability mass function of the random variable \(X\).

\section*{Probability Distribution}

If \(X\) is a discrete random variable, the function given by \(f(x)=P(X=x)\) for each \(x\) within the range of \(X\) is called the probability distribution of \(X\).

\section*{Probability Distribution}

A function can be considered as the probability distribution of a discrete random variable \(X\) if and only if its values, \(f(x)\), satisfy the conditions
1. \(f(x) \geq 0\) for each value within its domain
2. \(\sum_{x} f(x)=1\), where the summation extends over all the values within its domain.

\section*{Example 4}

What values of \(k\) can
\[
f(x)=(1-k) k^{x}
\]
serve as the values of the probability distribution of a random variable with the countably infinite range \(x=0,1,2, \ldots\) ?

Miller

\section*{Distribution Function or Cumulative Distribution}

If \(X\) is a discrete random variables, the cumulative distribution function \(F\) can be expressed as
\[
F(a)=\sum_{\text {all } x \leq a} p(x)
\]
where \(p(x)\) is the value of probability distribution of \(X\) at \(x\).

\section*{Example 5}

Random Variables
Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

\section*{Random Variables}

Let
\[
f(x)=\frac{{ }^{2} C_{x}{ }^{4} C_{3-x}}{{ }^{6} C_{3}} \quad \text { for } x=0,1,2
\]

Find the distribution function.

CDF
PDF - CDF

Properties


\section*{Properties of Distribution Function}

The values \(F(x)\) of the distribution function of a discrete random variable \(X\) satisfies the following properties:
1. \(F(-\infty)=0\) and \(F(\infty)=1\)
2. If \(a<b\), then \(F(a) \leq F(b)\) for any real number \(a\) and \(b\) Intuition?

Miller

\section*{Theorem: pdf - cdf relation}

If the range of a random variable \(X\) consists of the values \(x_{1}<x_{2}<x_{3}<\ldots<x_{n}\), then
1. \(f\left(x_{1}\right)=F\left(x_{1}\right)\)
2. \(f\left(x_{i}\right)=F\left(x_{i}\right)-F\left(x_{i-1}\right)\) for \(i=2,3, \ldots, n\)

Intuition?

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

\section*{Expectation}

If \(X\) is a discrete random variable and \(f(x)\) is the pdf, the expected value of \(X\) is
\[
E(X)=\sum_{x} x \cdot f(x)
\]

\section*{Theorem: Expected Functions}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

If \(X\) is a discrete random variable and \(f(x)\) is the pdf, the expected value of \(g(X)\) is
\[
E[g(X)]=\sum_{x} g(x) \cdot f(x)
\]

\section*{Theorem: Expected Functions}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

If \(X\) is a discrete random variable and \(f(x)\) is the pdf, the expected value of \(g(X)\) is
\[
E[g(X)]=\sum_{x} g(x) \cdot f(x)
\]

Powerful result.

\section*{Example 6}

\section*{Random Variables}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4 (mixed) Miller \& Miller

\section*{Random Variables}

Diserete Random

\section*{Variables}

PDF
What is \(E\left[X^{2}\right]\) ?
CDF
PDF - CDF

Properties
Moments

Chebyshev

\section*{Example 6}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

What is \(E\left[X^{2}\right]\) ? Given your probability distributions, calculate the expected value of the profit function \(\pi(X)=X^{2}-5 X+3\).

\section*{Theorem: Expectation of Simple Function}

If \(a\) and \(b\) are constants, then
\[
E(a X+b)=a E(X)+b
\]

\section*{Theorem: Expectation of Sum of Functions}

\section*{Random Variables}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

\section*{Theorem: Expectation of Sum of Functions}

If \(c_{1}, c_{2}, \ldots\) and \(c_{n}\) are constants, then
\[
E\left[\sum_{i=1}^{n} c_{i} g_{i}(X)\right]=\sum_{i=1}^{n} c_{i} E\left[g_{i}(X)\right]
\]

Use this shortcut to calculate the expected profit of your firm.

Miller

\section*{Theorem: Moments About Origin}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The \(r\) th moment about origin of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}^{\prime}\) is the expected value of \(X^{r}\) :
\[
\mu_{r}^{\prime}=E\left[X^{r}\right]=\sum_{x} x^{r} \cdot f(x)
\]

\section*{Theorem: Moments About Origin}

The \(r\) th moment about origin of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}^{\prime}\) is the expected value of \(X^{r}\) :
\[
\mu_{r}^{\prime}=E\left[X^{r}\right]=\sum_{x} x^{r} \cdot f(x)
\]

What is \(\mu_{1}^{\prime}\) ?

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ?

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?

PDF

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?
What is \(\mu_{3}\) ?

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4 (mixed) Miller \& Miller

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?
What is \(\mu_{3}\) ? What does it mean?

\section*{Theorem: Moments About Mean}

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?
What is \(\mu_{3}\) ? What does it mean?
What is \(\mu_{4}\) ?

\section*{Theorem: Moments About Mean}

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?
What is \(\mu_{3}\) ? What does it mean?
What is \(\mu_{4}\) ? What does it mean?

\section*{Theorem: Moments About Mean}

Chapters 4, 7 (mixed), Sheldon

The \(r\) th moment about mean of a discrete random variable \(X\), for \(r=0,1,2, \ldots ., \mu_{r}\) is the expected value of \(X^{r}\) :
\[
\begin{aligned}
& \mu_{r}=E\left[(X-\mu)^{r}\right] \\
& =\sum_{x}(x-\mu)^{r} \cdot f(x)
\end{aligned}
\]

What is \(\mu_{2}\) ? What does it mean?
What is \(\mu_{3}\) ? What does it mean?
What is \(\mu_{4}\) ? What does it mean?
What is higher moments about mean (central moments)?

\section*{Theorem: Variance}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

\section*{Random Variables}

Discrete Random

\section*{Variables}

PDF
CDF
PDF - CDF
\[
\operatorname{Var}[X]=E\left[(X-\mu)^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
\]

\section*{Theorem: Variance}

\section*{Random Variables}

If \(X\) has the variance \(\sigma^{2}\), then
\[
\operatorname{Var}(a X+b)=a^{2} \sigma^{2}
\]
where \(a\) and \(b\) are two constants.

\section*{Random Variables}

\section*{Theorem: Chebyshev's}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4 (mixed) Miller \& Miller

If \(\mu\) and \(\sigma\) are the mean and the standard deviation of a random variable \(X\), then for any positive constant \(k\) the probability is at least \(1-1 / k^{2}\) that \(X\) will take on value within \(k\) standard deviations of the mean. Symbolically,
\[
P(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}, \quad \sigma \neq 0
\]

\section*{Theorem: Chebyshev's}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

If \(\mu\) and \(\sigma\) are the mean and the standard deviation of a random variable \(X\), then for any positive constant \(k\) the probability is at least \(1-1 / k^{2}\) that \(X\) will take on value within \(k\) standard deviations of the mean. Symbolically,
\[
P(|X-\mu|<k \sigma) \geq 1-\frac{1}{k^{2}}, \quad \sigma \neq 0
\]

Proof not required.

\section*{Moment-Generating Functions}
```

Chapters 4,7
(mixed), Sheldon
Ross
Chapters 3,4
(mixed) Miller \&
Miller

```

The moment generating function of a discrete random variable \(X\), where it exists, is given by:
\[
M_{X}(t)=E\left[e^{t X}\right]=\sum_{x} e^{t x} \cdot f(x)
\]

\section*{Theorem: Moments Generation}
\[
\left.\frac{d^{r} M_{X}(t)}{d t^{r}}\right|_{t=0}=\mu_{r}^{\prime}
\]

\section*{Random Variables}

PDF
CDF
PDF - CDF

Properties

\section*{Theorem: Moments-Generating Functions}

If \(a\) and \(b\) are constants, then
\[
\begin{aligned}
M_{X+a}(t) & =E\left[e^{(X+a) t}\right]=e^{a t} \cdot M_{X}(t) \\
M_{b X}(t) & =E\left[e^{(b X) t}\right]=M_{X}(b t) \\
M_{\frac{X+a}{b}}(t) & =E\left[e^{\left(\frac{X+a}{b}\right) t}\right]=e^{\frac{a t}{b}} \cdot M_{X}\left(\frac{t}{b}\right)
\end{aligned}
\]

\section*{Bernoulli Random Variable}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4 (mixed) Miller \& Miller

Bernoulli random variable ( X ) captures success or failure of a trial. If the experiment is a success the \(X\) equals one else \(X\) equals zero.
\begin{tabular}{c|c|c}
\hline \hline Parameters & PDF & CDF \\
\hline \(0 \leq p \leq 1\) & \(f(0)=1-p\) & \(F(0)=1-p\) \\
& \(f(1)=p\) & \(F(1)=1\) \\
\hline
\end{tabular}
\[
\begin{aligned}
& E(X)=p \\
& \operatorname{Var}(X)=p(1-p) \\
& \operatorname{MGF} \text { of } X=1-p+p e^{t}
\end{aligned}
\]

\section*{Binomial Random Variable}

Binomial random variable ( X ) denotes the probability of i success from n experiments. If n independent trials or games

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4 (mixed) Miller \& Miller or experiments are conducted, each of which has the probability of success equal to \(p\) then \(f(i)\) refers to the probability that \(i\) of these \(n\) experiments were successful and rest were not.
\begin{tabular}{c|c|c}
\hline \hline Parameters & PDF & CDF \\
\hline\(n>0,0 \leq p \leq 1\) & \(f(X=i)=\) & \(P(X \leq i)=\) \\
& \({ }^{n} C_{i} p^{i}(1-p)^{n-i}\) & \(\sum_{k=0}^{i}{ }^{n} C_{k} p^{k}(1-p)^{n-k}\) \\
\hline
\end{tabular}
\(E(X)=n p\)
\(\operatorname{Var}(X)=n p(1-p)\)
MGF of \(X=\left(1-p+p e^{t}\right)^{n}\)

\section*{Poisson Random Variable}

Chapters 4, 7 (mixed), Sheldon

Poisson distribution is the probability distribution for a very large number of independent rare ( \(p \approx 0\) ) events. Let us say we have a hundred apple trees, all identical.
\begin{tabular}{c|c|c}
\hline \hline Parameters & PDF & CDF \\
\hline\(\lambda>0\) & \(f(X=i)=e^{-\lambda \frac{\lambda^{i}}{i!}}\) & \(P(X \leq i)=\sum_{k=0}^{i} e^{-\lambda \frac{\lambda^{k}}{k!}}\) \\
\hline
\end{tabular}
\(E(X)=\lambda\)
\(\operatorname{Var}(X)=\lambda\)
MGF of \(X=\exp \left(\lambda\left(e^{t}-1\right)\right)\)

\section*{Geometric Random Variable}

Chapters 4, 7 (mixed), Sheldon Ross
Chapters 3, 4
(mixed) Miller \& Miller

The geometric random variable ( X ) describes the probability of being successful after a series of failures.
\begin{tabular}{c|c|c}
\hline \hline Parameters & PDF & CDF \\
\hline \(0 \leq p \leq 1\) & \(f(X=i)=p(1-p)^{i-1}\) & \(P(X \leq i)=\) \\
& & \(\sum_{k=1}^{i} p(1-p)^{k-1}\) \\
\hline
\end{tabular}
\(E(X)=1 / p\)
\(\operatorname{Var}(X)=(1-p) / p^{2}\)
MGF of \(X=p e^{t} /\left(p+(1-p) e^{t}\right)\)

\section*{Negative Binomial Random Variable}

Negative Binomial Random Variable depicts how many trials

Chapters 4, 7 (mixed), Sheldon need to be done to get \(r\) successes. For the \(r\) th success to occur in the nth trial then \(r-1\) successes should be in the first \(\mathrm{n}-1\) trials and the nth trial must be a success.
\begin{tabular}{c|c|c}
\hline \hline Parameters & PDF & CDF \\
\hline\(r, 0 \leq p \leq 1\) & \(f(X=i)=\) & \(P(X \leq i)=\) \\
& \({ }^{n-1} C_{r-1} p^{r}(1-p)^{n-r}\) & \(\sum_{k=n}^{i}{ }^{k-1} C_{r-1} p^{r}(1-p)^{k-r}\) \\
\hline
\end{tabular}
\(E(X)=r / p\)
\(\operatorname{Var}(X)=r(1-p) / p^{2}\)
MGF of \(\mathrm{X}=\left[p e^{t} /\left(p+(1-p) e^{t}\right)\right]^{r}\)```

