# Axioms of Probability 

Chapter 2, Sheldon Ross

September 10, 2015

## Table of contents

Sample Space and Events

Probability

Foundations

Exercise

## Sample Space

The set of all possible outcomes of an experiment is known as the sample space of the experiment. It is denoted by $S$.

- If experiment is the determination of gender of a new born child, sample space is $\{$ girl, boy $\}$.


## Sample Space

The set of all possible outcomes of an experiment is known as the sample space of the experiment. It is denoted by $S$.

- If experiment is the determination of gender of a new born child, sample space is $\{$ girl, boy $\}$.
- If experiment is flipping of two coins, sample space is


## Sample Space

The set of all possible outcomes of an experiment is known as the sample space of the experiment. It is denoted by $S$.

- If experiment is the determination of gender of a new born child, sample space is $\{$ girl, boy $\}$.
- If experiment is flipping of two coins, sample space is $\{(\mathrm{H}, \mathrm{H})$, $(\mathrm{H}, \mathrm{T}),(\mathrm{T}, \mathrm{H}),(\mathrm{T}, \mathrm{T})\}$.


## Sample Space

The set of all possible outcomes of an experiment is known as the sample space of the experiment. It is denoted by $S$.

- If experiment is the determination of gender of a new born child, sample space is $\{$ girl, boy $\}$.
- If experiment is flipping of two coins, sample space is $\{(\mathrm{H}, \mathrm{H})$, (H,T), (T,H), (T,T) \}.
- In an experiment, die is rolled continuously until a 6 appears, at which point the experiment stops. What is the sample space of this experiment?


## Example 1

A system is composed of 5 components, each of which is either working (1) or failed (0). Consider a experiment which checks the status of each component and let the outcome be $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.
What is the sample space?

## Example 1

A system is composed of 5 components, each of which is either working (1) or failed (0). Consider a experiment which checks the status of each component and let the outcome be $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.
What is the sample space?
How many outcomes are in it?

## Event

Any subset $E$ of the sample space is an event.

- If experiment is the determination of gender of a new born child, event that the child is girl is $\{$ girl $\}$.


## Event

Any subset $E$ of the sample space is an event.

- If experiment is the determination of gender of a new born child, event that the child is girl is $\{$ girl $\}$.
- If experiment is flipping of two coins, event that the first coin is head is


## Event

Any subset $E$ of the sample space is an event.

- If experiment is the determination of gender of a new born child, event that the child is girl is $\{$ girl $\}$.
- If experiment is flipping of two coins, event that the first coin is head is $\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}$.


## Event

Any subset $E$ of the sample space is an event.

- If experiment is the determination of gender of a new born child, event that the child is girl is $\{$ girl $\}$.
- If experiment is flipping of two coins, event that the first coin is head is $\{(\mathrm{H}, \mathrm{H}),(\mathrm{H}, \mathrm{T})\}$.
- Two dice is thrown. Event that the sum of dice is odd? Event that at least one of the dice lands on 1 ?


## Definitions

For any two events $E$ and $F$ of sample space $S$,

- Union of two events: consists of all elements that are either in $E$ or in $F$ or in both $E$ and $F$. Denoted by $E \cup F$.


## Definitions

For any two events $E$ and $F$ of sample space $S$,

- Union of two events: consists of all elements that are either in $E$ or in F or in both $E$ and $F$. Denoted by $E \cup F$.
- Intersection of two events: consists of all elements that are both in $E$ and $F$. Denoted by $E \cap F$.


## Definitions

For any two events $E$ and $F$ of sample space $S$,

- Union of two events: consists of all elements that are either in $E$ or in F or in both $E$ and $F$. Denoted by $E \cup F$.
- Intersection of two events: consists of all elements that are both in $E$ and $F$. Denoted by $E \cap F$.
- Mutually Exclusive events: If $E \cap F=\phi$ then $E$ and $F$ is said to be mutually exclusive.


## Definitions

For any two events $E$ and $F$ of sample space $S$,

- Union of two events: consists of all elements that are either in $E$ or in $F$ or in both $E$ and $F$. Denoted by $E \cup F$.
- Intersection of two events: consists of all elements that are both in $E$ and $F$. Denoted by $E \cap F$.
- Mutually Exclusive events: If $E \cap F=\phi$ then $E$ and $F$ is said to be mutually exclusive.
- Venn Diagrams? What if there are more than 2 events?


## Example 2

Let the experiment be throwing two dice.

## Example 2

Let the experiment be throwing two dice.
$\mathrm{E}=$ one of the dice shows 5
$\mathrm{F}=$ sum of both dice is 7

## Example 2

Let the experiment be throwing two dice.
$\mathrm{E}=$ one of the dice shows 5
$\mathrm{F}=$ sum of both dice is 7

- What is $E \cup F$ ?
- What is $E \cap F$ ?


## Set Rules

## Commutative Laws: $E \cup F=F \cup E$ <br> $E \cap F=F \cap E$

## Set Rules

Commutative Laws: $E \cup F=F \cup E \quad E \cap F=F \cap E$ Associate Laws:
$(E \cup F) \cup G=E \cup(F \cup G) \quad(E \cap F) \cap G=E \cap(F \cap G)$

## Set Rules

Commutative Laws: $E \cup F=F \cup E \quad E \cap F=F \cap E$ Associate Laws:
$(E \cup F) \cup G=E \cup(F \cup G) \quad(E \cap F) \cap G=E \cap(F \cap G)$
Distributive Laws:
$(E \cup F) \cap G=(E \cap G) \cup(F \cap G) \quad(E \cap F) \cup G=(E \cup G) \cap(F \cup G)$

## More Definitions

For any two events $E$ and $F$ of sample space $S$,

- Complement of an event E : consists of all elements in the sample space that are not in $E$. Denoted by $E^{c}$.


## More Definitions

For any two events $E$ and $F$ of sample space $S$,

- Complement of an event E : consists of all elements in the sample space that are not in $E$. Denoted by $E^{c}$.
- Subsets and Supersets: If all elements of $E$ are also in F, then $E$ is a subset of $F$ and $F$ is the superset of $E$. Denoted by $E \subset F$.


## More Definitions

For any two events $E$ and $F$ of sample space $S$,

- Complement of an event E : consists of all elements in the sample space that are not in $E$. Denoted by $E^{c}$.
- Subsets and Supersets: If all elements of $E$ are also in F, then $E$ is a subset of $F$ and $F$ is the superset of $E$. Denoted by $E \subset F$.
- Venn Diagrams


## Example 3

Hospital codes incoming patients according to whether they have insurance (code 1 if they do and 0 if they don't) and according to their condition (which is rated as good (g), fair (f) or serious (s)). Experiment is coding a patient.

- Give the sample space of this experiment


## Example 3

Hospital codes incoming patients according to whether they have insurance (code 1 if they do and 0 if they don't) and according to their condition (which is rated as good (g), fair (f) or serious (s)). Experiment is coding a patient.

- Give the sample space of this experiment
- $A=$ patient is in serious condition. Outcomes in A?


## Example 3

Hospital codes incoming patients according to whether they have insurance (code 1 if they do and 0 if they don't) and according to their condition (which is rated as good (g), fair (f) or serious (s)). Experiment is coding a patient.

- Give the sample space of this experiment
- $A=$ patient is in serious condition. Outcomes in A?
- $B=$ patient is uninsured. Outcomes in $B$ ?


## Example 3

Hospital codes incoming patients according to whether they have insurance (code 1 if they do and 0 if they don't) and according to their condition (which is rated as good (g), fair (f) or serious (s)).
Experiment is coding a patient.

- Give the sample space of this experiment
- $A=$ patient is in serious condition. Outcomes in $A$ ?
- $B=$ patient is uninsured. Outcomes in $B$ ?
- $B^{c} \cup A$ ?


## DeMorgan's Laws

Law 1: $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$

## DeMorgan's Laws

Law 1: $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$
Law 2: $\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$

## DeMorgan's Laws

Law 1: $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$
Law 2: $\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$
Proof for two sets is easy.

## DeMorgan's Laws

Law 1: $\left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}^{c}$
Law 2: $\left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}^{c}$
Proof for two sets is easy. Proof for n sets?

## What is Probability?

- Relative Frequency: if you repeat an experiment (in same conditions) how many times a certain event might occur?

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}
$$

## What is Probability?

- Relative Frequency: if you repeat an experiment (in same conditions) how many times a certain event might occur?

$$
P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}
$$

- How do you know that there would be convergence and that it is unique?


## Three Axioms of Probability

- Axiom 1: $0 \leq P(E) \leq 1$


## Three Axioms of Probability

- Axiom 1: $0 \leq P(E) \leq 1$
- Axiom 2: $P(S)=1$


## Three Axioms of Probability

- Axiom 1: $0 \leq P(E) \leq 1$
- Axiom 2: $P(S)=1$
- Axiom 3: For any sequence of mutually exclusive events $E_{1}$, $E_{2}, \ldots$ (that is, events for which $E_{i} \cap E_{j}=\phi$ when $i \neq j$ )

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

## Three Axioms of Probability

- Axiom 1: $0 \leq P(E) \leq 1$
- Axiom 2: $P(S)=1$
- Axiom 3: For any sequence of mutually exclusive events $E_{1}$, $E_{2}, \ldots$ (that is, events for which $E_{i} \cap E_{j}=\phi$ when $i \neq j$ )

$$
P\left(\bigcup_{i=1}^{n} E_{i}\right)=\sum_{i=1}^{n} P\left(E_{i}\right)
$$

What is the probability of getting an even number on a die?

## Example 4

An insurance company offers 2 kinds of policies to home owners and to automobile owners. The accompanying table gives proportions for the various categories of policyholders who have both types of insurance. For example, the proportion of individuals with both low homeowner's deductible and low auto deductible is . 06

|  | Homeowner's |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Auto | N | L | M | H |
| L | .04 | .06 | .05 | .03 |
| M | .07 | .10 | .20 | .10 |
| H | .02 | .03 | .15 | .15 |

## Example 4 contd

Suppose an individual having both types of policies is randomly selected.
a. What is the probability that the individual has a medium auto and a high homeowner's insurance?
b. What is the probability that the individual has a low auto insurance? A low homeowner's insurance?
c. What is the probability that the individual is in the same category for both auto and homeowner's insurance?
d. Based on your answer in part (c), what is the probability that the two categories are different?
e. What is the probability that the individual has at least one low insurance level?
f. Using the answer in part (e), what is the probability that neither insurance level is low?

## Propositions

## Proposition 1

$P\left(E^{c}\right)=1-P(E)$

## Propositions

## Proposition 2

If $E \subset F$ then $P(E) \leq P(F)$

## Propositions

## Proposition 3

$P(E \cup F)=P(E)+P(F)-P(E \cap F)$

## Example 5

In a school:
60\% of students wear neither a ring nor a necklace $20 \%$ wear a ring $30 \%$ wear a necklace

## Example 5

In a school:
60\% of students wear neither a ring nor a necklace
$20 \%$ wear a ring
$30 \%$ wear a necklace
If one of the students is chosen randomly, what is the probability that this student is wearing
(a) a ring or a necklace?

## Example 5

In a school:
60\% of students wear neither a ring nor a necklace $20 \%$ wear a ring
$30 \%$ wear a necklace
If one of the students is chosen randomly, what is the probability that this student is wearing
(a) a ring or a necklace? (b) a ring and a necklace?

## Propositions

Proposition 4

$$
\begin{aligned}
P\left(E_{1} \cup E_{2} \cup \ldots \cup E_{n}\right) & =\sum_{i=1}^{n} P\left(E_{i}\right)-\sum_{i_{1}<i_{2}}^{n} P\left(E_{i_{1}} E_{i_{2}}\right) \\
& +(-1)^{r+1} \sum_{i_{1}<i_{2}<\ldots<i_{r}}^{n} P\left(E_{i_{1}} E_{i_{2}} \ldots E_{r}\right)+ \\
& \ldots+(-1)^{n+1} P\left(E_{1} E_{2} \ldots E_{r}\right)
\end{aligned}
$$

## Equally Likely Outcomes

$P(E)=\frac{\text { number of outcomes in } E}{\text { number of outcomes in } S}$

## Example 6

There are n socks, 3 of which are red, in a drawer. What is the value of n if, when 2 of the socks are chosen randomly, the probability that they are both red is 0.5 ?

## Example 7

There are 100 students in a school, which offers three language courses: French, Spanish and German. There are

## Example 7

There are 100 students in a school, which offers three language courses: French, Spanish and German. There are
Spanish $=28$, French $=26$, German $=16$,
Spanish and French $=12$, Spanish and German $=4$, French and German $=6$,
All three languages $=2$

## Example 7

There are 100 students in a school, which offers three language courses: French, Spanish and German. There are
Spanish $=28$, French $=26$, German $=16$,
Spanish and French $=12$, Spanish and German $=4$, French and German $=6$,
All three languages $=2$
(a) If a student is chosen randomly, what is the prob. that she is not taking any language class?

## Example 7

There are 100 students in a school, which offers three language courses: French, Spanish and German. There are
Spanish $=28$, French $=26$, German $=16$,
Spanish and French $=12$, Spanish and German $=4$, French and German $=6$, All three languages $=2$
(a) If a student is chosen randomly, what is the prob. that she is not taking any language class?
(b) If a student is chosen randomly, what is the prob. that she is exactly one language class?

## Example 7

There are 100 students in a school, which offers three language courses: French, Spanish and German. There are
Spanish $=28$, French $=26$, German $=16$,
Spanish and French $=12$, Spanish and German $=4$, French and German $=6$,
All three languages $=2$
(a) If a student is chosen randomly, what is the prob. that she is not taking any language class?
(b) If a student is chosen randomly, what is the prob. that she is exactly one language class?
(c) If 2 students are chosen randomly, what is the prob. that at least one is taking a language class?

## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$
- $\mathrm{P}($ two pair $)=.2315$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$
- $\mathrm{P}($ two pair $)=.2315$
- $\mathrm{P}($ three alike $)=.1543$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$
- $\mathrm{P}($ two pair $)=.2315$
- $\mathrm{P}($ three alike $)=.1543$
- $\mathrm{P}($ three alike and two alike $)=.0386$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$
- $\mathrm{P}($ two pair $)=.2315$
- $\mathrm{P}($ three alike $)=.1543$
- $\mathrm{P}($ three alike and two alike $)=.0386$
- $\mathrm{P}($ four alike $)=.0193$


## Example 8

Poker dice is played simultaneously rolling 5 dice. Show that

- $\mathrm{P}($ no two alike $)=.0926$
- $\mathrm{P}($ one pair $)=.4630$
- $\mathrm{P}($ two pair $)=.2315$
- $\mathrm{P}($ three alike $)=.1543$
- $\mathrm{P}($ three alike and two alike $)=.0386$
- $\mathrm{P}($ four alike $)=.0193$
- $P($ five alike $)=.0008$


Probabilities can be used for many purposes. (Source: Peanuts ${ }^{\circledR}$ reprinted by permission of United Feature Syndicate, Inc.)

