Combinatorial Analysis

Chapter 1, Sheldon Ross

September 8, 2015

Basic Principle of Counting

If r experiments are performed such that

Basic Principle of Counting

If r experiments are performed such that first one may result in n_{1} outcomes, and

Basic Principle of Counting

If r experiments are performed such that first one may result in n_{1} outcomes, and
each of these possible n_{1} outcomes can have n_{2} possible outcomes of the second experiment, and

Basic Principle of Counting

If r experiments are performed such that first one may result in n_{1} outcomes, and
each of these possible n_{1} outcomes can have n_{2} possible outcomes of the second experiment, and
each of the outcomes of first two experiments there are n_{3} possible outcomes of the third experiment, ...

Basic Principle of Counting

If r experiments are performed such that first one may result in n_{1} outcomes, and
each of these possible n_{1} outcomes can have n_{2} possible outcomes of the second experiment, and
each of the outcomes of first two experiments there are n_{3} possible outcomes of the third experiment, ... then there is a total of $n_{1} \cdot n_{2} \cdots n_{r}$ outcomes of r experiments.

Example 1

How many different 7-place license plates are possible if the first 2 places are for letter and the other 5 are for numbers?

- Repetition allowed.

Example 1

How many different 7-place license plates are possible if the first 2 places are for letter and the other 5 are for numbers?

- Repetition allowed.
- Repetition not allowed.

Example 1

How many different 7-place license plates are possible if the first 2 places are for letter and the other 5 are for numbers?

- Repetition allowed.
- Repetition not allowed.
- Repetition allowed but last digit of the numbers can not be odd.

Permutation: Ordered Arrangements

If n objects are to be arranged then

Permutation: Ordered Arrangements

If n objects are to be arranged then first place has n options,

Permutation: Ordered Arrangements

If n objects are to be arranged then first place has n options,
second place has $n-1$ options,

Permutation: Ordered Arrangements

If n objects are to be arranged then first place has n options,
second place has $n-1$ options, third place has $n-2$ options,..

Permutation: Ordered Arrangements

If n objects are to be arranged then first place has n options,
second place has $n-1$ options, third place has $n-2$ options,.. then there are a total of $n \cdot(n-1) \cdot(n-2) \cdot 3 \cdot 2 \cdot 1=n$! permutations of n objects.

Permutation: Ordered Arrangements

If n objects are to be arranged then first place has n options,
second place has $n-1$ options,
third place has $n-2$ options,..
then there are a total of $n \cdot(n-1) \cdot(n-2) \cdot 3 \cdot 2 \cdot 1=n$! permutations of n objects.
$(0!=1)$

Example 2

- In how many ways can 3 boys ($\mathrm{R}, \mathrm{L}, \mathrm{B}$) and 3 ($\mathrm{S}, \mathrm{G}, \mathrm{N}$) girls sit in a row?

Example 2

- In how many ways can 3 boys ($\mathrm{R}, \mathrm{L}, \mathrm{B}$) and $3(\mathrm{~S}, \mathrm{G}, \mathrm{N})$ girls sit in a row?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if the boys and girls are to sit to together?

Example 2

- In how many ways can 3 boys ($\mathrm{R}, \mathrm{L}, \mathrm{B}$) and 3 (S, G, N) girls sit in a row?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if the boys and girls are to sit to together?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if only the boys are to sit to together?

Example 2

- In how many ways can 3 boys ($\mathrm{R}, \mathrm{L}, \mathrm{B}$) and 3 (S, G, N) girls sit in a row?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if the boys and girls are to sit to together?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if only the boys are to sit to together?
- In how may ways can 3 boys (R, L, B) and 3 girls (S, G, N) sit in a row if no two people of the same sex are allowed to sit together?

Ordered Arrangements with Duplicates

If n objects are to be arranged then

Ordered Arrangements with Duplicates

If n objects are to be arranged then of which n_{1} are alike and n_{2} are alike and $\ldots n_{r}$ are alike then

Ordered Arrangements with Duplicates

If n objects are to be arranged then of which n_{1} are alike and n_{2} are alike and $\ldots n_{r}$ are alike then

$$
\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

different combinations of n objects are possible.

Example 3

How many different arrangements can be made from the letters

- Fluke?

Example 3

How many different arrangements can be made from the letters

- Fluke?
- Propose?

Example 3

How many different arrangements can be made from the letters

- Fluke?
- Propose?
- Mississippi?

Example 4

A child has 12 blocks, of which 6 are black, 4 are red, 1 is white and 1 is blue. If the child puts the blocks in a line, how many arrangements are possible?

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E
- You need to select 3

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E
- You need to select 3
- First object can be selected in 5 different ways, second object in 4 ways and third object in 3 ways

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E
- You need to select 3
- First object can be selected in 5 different ways, second object in 4 ways and third object in 3 ways
- However, in this process order is relevant. That is $A B C, A C B$, BCA, BAC, CAB, CBA are counted separately

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E
- You need to select 3
- First object can be selected in 5 different ways, second object in 4 ways and third object in 3 ways
- However, in this process order is relevant. That is $A B C, A C B$, BCA, BAC, CAB, CBA are counted separately
- Do we want this?

Combinations: Groups of Objects

How to select r objects from a total of n objects?

- Suppose 5 total objects - A, B, C, D, E
- You need to select 3
- First object can be selected in 5 different ways, second object in 4 ways and third object in 3 ways
- However, in this process order is relevant. That is $A B C, A C B$, BCA, BAC, CAB, CBA are counted separately
- Do we want this?
- Hence divide it by the number of 'repeats' $3 \cdot 2 \cdot 1$.

"n choose r"

We define $\binom{n}{r}$, for $r \leq n$ by

$$
\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{(n-r)!r!}
$$

Example 5

A dance class consists of 22 students, of which 10 are women and rest are men. If 5 men and 5 women are to be chosen and paired off, how many results are possible?

Example 6

A student has to sell 2 books from a collection of 6 math, 7 science and 4 economics books. How many choices are possible if

- both books are to be on the same subject?
- the books are to be of different subjects?

Combinatorial Identity

$$
\binom{n}{r}=\binom{n-1}{r-1}+\binom{n-1}{r}
$$

Prove This. Intuition?

Binomial Coefficients

The binomial theorem

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

Multinomial Coefficients

How to divide a set of distinct n items into r distinct groups of respective size $n_{1}, n_{2}, \cdots, n_{r}$?, where $\sum_{i} n_{i}=n$?

Multinomial Coefficients

How to divide a set of distinct n items into r distinct groups of respective size $n_{1}, n_{2}, \cdots, n_{r}$?, where $\sum_{i} n_{i}=n$?
If $n_{1}+n_{2}+\cdots+n_{r}=n$ then

$$
\binom{n}{n_{1} \cdot n_{2} \cdots n_{r}}=\frac{n!}{n_{1}!n_{2}!\cdots n_{r}!}
$$

represents the number of possible divisions of n distinct objects into r distinct groups of respective size $n_{1}, n_{2}, \cdot \cdot, n_{r}$.

Multinomial Theorem

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{n}=\sum_{\left(n_{1}, \ldots, n_{r}\right): n_{1}+\ldots+n_{r}=n}^{n} n_{n_{1} \cdot n_{2} \cdot \cdots n_{r}}^{n} x_{1}^{n_{1}} x_{2}^{n_{2}} \cdots x_{r}^{n_{r}}
$$

Example 7

8 teachers are to be divided among 4 schools.

- How many divisions are possible if each school should get 2 teachers?

Example 7

8 teachers are to be divided among 4 schools.

- How many divisions are possible if each school should get 2 teachers?
- How many divisions are possible?

Example 8

Suppose that ten people, including you and a friend, line up for a group picture. How many ways can the photographer rearrange the line if she wants to keep exactly three people between you and your friend?

Example 9

A three-digit number is to be formed from the digits 1 through 7, with no digit being used more than once. How many such numbers would be less than 289?

Example 10

In how many ways can the digits 1 through 9 be arranged such that
(a) all the even digits precede all the odd digits?

Example 10

In how many ways can the digits 1 through 9 be arranged such that
(a) all the even digits precede all the odd digits?
(b) all the even digits are adjacent to each other?

Example 10

In how many ways can the digits 1 through 9 be arranged such that
(a) all the even digits precede all the odd digits?
(b) all the even digits are adjacent to each other?
(c) two even digits begin the sequence and two even digits end the sequence?

